mguine.narod.ru


Экология, экологическая безопасность и борьба за первозданность природы.

ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ


1 Как следует из названия, шумомером называют прибор для измерения шума. Устройство этого прибора описано в §17.2.

Рассмотрим, как определяются предельные значения инфразвука. Чаще всего в условиях производства инфразвук сочетается с низкочастотным шумом и вибрацией. Как и в случае шума, инфразвук измеряется шумомерами.
Инфразвук подразделяется на постоянный, уровень звукового давления которого, измеренного по стандартной шкале «линейная» шумомера, изменяется не более чем на 10 дБ за время наблюдения 1 мин, и непостоянный, аналогичная характеристика которого изменяется не менее чем на 10 дБ за тот же период наблюдения. Для постоянного инфразвука нормируется уровень звукового давления на частотах 2, 4, 8, 16 и 31,5 Гц, а для непостоянного – общий уровень звукового давления по стандартной шкале «линейная» шумомера, дБ. Предельно допустимые уровни инфразвука, установленные «Гигиеническими нормами инфразвука на рабочих местах», показаны в табл. 17.4.



Допустимый уровень ультразвука нормируется в соответствии с ГОСТом 12.1.003-83 и Санитарными нормами № 2282-801. Весь ультразвуковой диапазон частот принято подразделять на низкочастотный с частотой колебаний до 100 кГц и высокочастотный (от 100 до 1 000 000 кГц). Низкочастотные колебания распространяются как воздушным, так и контактным путем, а высокочастотные – только контактным. Для низкочастотных ультразвуковых колебаний в соответствии с названными выше нормативными документами установлены следующие предельные значения звукового давления на рабочих местах:
1 Полные названия этих нормативных документов: ГОСТ 12.1.003-83 «ССБТ. Ультразвук. Общие требования безопасности» и СН № 2282-80 «Санитарные нормы и правила при работе с оборудованием, создающим ультразвук, передаваемый локальным путем на руки работающих».


Среднегеометрическая
частота, Гц
12,5
16,0
20,0
25,0
31,5-100,0

Уровень звукового
давления, дБ
80
90
100
105
110
Если ультразвуковые колебания передаются на руки и другие части тела работающих контактным путем, то уровень звукового давления не должен превышать 110 дБ.
Как уже сказано выше, различают общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную (местную), передающуюся через руки человека.
В зависимости от источника возникновения выделяют три категории вибрации:


транспортная;


транспортно-технологическая;


технологическая.
Вибрацию нормируют в соответствии с ГОСТом 12.1.012-78 «ССБТ. Вибрация. Общие требования безопасности», а также в соответствии с СН № 3044-84 «Санитарные нормы вибрации рабочих мест» (общая вибрация) и СН № 3041-84 «Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих».
Для каждой из трех категорий вибрации нормируют величины виброскорости и виброускорения как в линейных единицах (м/с и м/с2), так и в логарифмических (дБ) в зависимости от частоты вибрации. Общая вибрация нормируется в диапазоне частот 0,8–80 Гц, а местная (локальная) – в диапазоне частот 8–1000 Гц. Обычно вибрация включает как горизонтальную, так и вертикальную составляющие, поэтому при ее нормировании учитывают направление действия вибрации. При этом используют следующие обозначения: Z – вертикальная ось, а Х и Y – горизонтальные оси. В табл. 17.5 и 17.6 представлены примеры нормирования как общей, так и локальной вибрации.





17.2. Основные методы борьбы с шумом, инфра- и ультразвуком и вибрацией

Рассмотрим основные методы борьбы с шумом, инфра- и ультразвуком, а также с вибрацией.
Различные механические, аэродинамические и электромагнитные явления являются причиной возникновения шумов. Механические шумы возникают при работе различных машин и механизмов и вызваны трением и соударениями составляющих их деталей, ударными процессами, используемыми в производстве (ковка, штамповка) и рядом других факторов. Аэродинамические и гидродинамические шумы возникают при течении газов и жидкостей. Электромагнитные шумы обычно сопровождают работу различных электрических установок. Перечислим основные способы, используемые для снижения шума в производственных помещениях.
Наиболее рациональный способ уменьшения шума – снижение звуковой мощности его источника (машины, установки, агрегата и т.д.). Уровень звуковой мощности (Lp) рассчитывается по следующей формуле:
Lp= 10LgP/P0,



(17.15)
где

Р

– звуковая мощность, Вт;
P0

– пороговая звуковая мощность, равная 10-12 Вт;
Lp

– уровень звуковой мощности, дБ.
Этот способ борьбы с шумом носит название уменьшения шума в источнике его возникновения. Снижение механических шумов достигается: улучшением конструкции машин и механизмов, заменой деталей из металлических материалов на пластмассовые, заменой ударных технологических процессов на безударные (например, клепку рекомендуется заменять сваркой, штамповку – прессованием и т.д.), применением вместо зубчатых передач в машинах и механизмах других видов передач (например, клиноременных) или использованием зубчатых передач, не издающих громких звуков (например, при использовании не прямозубых, а косозубых или шевронных шестерен), нанесением смазки на трущиеся детали и рядом других мероприятий.
Эффективность некоторых из перечисленных мероприятий по снижению уровня шума представлена ниже:
Мероприятия
Замена прямозубых шестерен шевронными
Замена зубчатой передачи на клиноременную
Замена металлических корпусов машин на пластмассовые:
в области высоких частот
в области средних частот

Снижение уровня шума, дБ
5
10–15

7–15
2–6

Как уже сказано выше, аэродинамические и гидродинамические шумы сопровождают течение жидкости или газа. Эти шумы также возникают при работе вентиляторов, компрессоров, газовых турбин, двигателей внутреннего сгорания, при выпуске пара или воздуха в атмосферу, при вращении винтов самолета, при работе насосов для перекачки жидкостей и др.
Для уменьшения аэродинамических и гидродинамических шумов рекомендуются снижение скорости обтекания газовыми или воздушными потоками препятствий, улучшение аэродинамики тел, работающих в контакте с потоками; снижение скорости истечения газовой струи и уменьшение диаметра отверстия, из которого эта струя истекает; выбор оптимальных режимов работы насосов для перекачивания жидкостей; правильное проектирование и эксплуатация гидросистем и ряд других мероприятий. Часто не удается уменьшить аэродинамические шумы в источнике их возникновения, поэтому приходится использовать другие методы борьбы с этими шумами (использование звукоизоляции источника, установка глушителей).
Для борьбы с шумами электромагнитного происхождения рекомендуется тщательно уравновешивать вращающиеся детали электромашин (ротор, подшипники), осуществлять тщательную притирку щеток электродвигателей, применять плотную прессовку пакетов трансформаторов и т.д.
Следующим способом снижения шума является изменение направленности его излучения. Этот способ применяется в том случае, когда работающее устройство (машина, агрегат, установка) направленно излучает шум. Примером такого устройства может служить труба для сброса в атмосферу сжатого воздуха. Правильное расположение этой трубы представлено на рис. 17.3. Направленная звуковая волна должна быть ориентирована в противоположную от рабочего места или жилого строения сторону.
Если на территории предприятия расположен один или несколько шумных цехов, то их рекомендуется сосредоточить в одном-двух местах, максимально удаленных от остальных производств. При расположении предприятия на территории города шумные производства должны находиться на значительном удалении от жилых домов. Это мероприятие по борьбе с шумом называется рациональной планировкой предприятий и цехов.
Следующий способ борьбы с шумом связан с уменьшением звуковой мощности по пути распространения шума (звукоизоляция). Практически это достигается использованием звукоизолирующих ограждений, звукоизолирующих кабин и пультов управления, звукоизолирующих кожухов и акустических экранов.


К звукоизолирующим ограждениям относятся стены, перекрытия, перегородки, остекленные проемы, окна, двери. Основная количественная характеристика эффективности звукоизолирующих свойств ограждений – коэффициент звукопроницаемости τ (безразмерная величина), который может быть рассчитан по следующей формуле:




(17.16)
где и – интенсивности прошедшего через ограждение и падающего звука, Вт/м2);
и – звуковое давление прошедшего через ограждение и падающего звука, Па.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях

Hosted by uCoz