mguine.narod.ru


Экология, экологическая безопасность и борьба за первозданность природы.

ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Это тоже критический этап, характерный для любого системного исследования, на котором успех или неудача во многом зависят от тонкого равновесия между упрощением и усложнением – равновесия, при котором сохранены все существенные связи с исходной проблемой и при этом можно получить решение, поддающееся качественному анализу и имеющее наглядную интерпретацию.
3. Установление иерархии целей и задач
После постановки задачи и ограничения степени ее сложности (как правило, разумного упрощения) можно приступать к установлению целей и задач исследования. Обычно цели и задачи выстраивают в некоторую цепочку (образуют иерархию) по степени их возможности; при этом производят подразделение (декомпозицию) [44] основных задач на ряд более простых (второстепенных). Однако здесь следует иметь в виду, что задачи, важные с точки зрения получения научной информации, в ряде случаев довольно слабо влияют на вид решений, принимаемых относительно воздействия на экосистему и управления ею. Поэтому установление приоритетности тех или иных задач в иерархической цепочке – одна из центральных проблем системного анализа. Особенно это проявляется в ситуации, когда исследователь заведомо ограничен определенными формами управления и концентрирует максимум усилий на задачах, непосредственно связанных с самими экологическими процессами.
4. Выбор путей решения задач
На данном этапе можно выбрать несколько путей решения проблемы. В общем случае естественно искать наиболее общее аналитическое решение, поскольку это позволит максимально использовать результаты исследования аналогичных задач и соответствующий математический аппарат. При этом выбор семейства, в рамках которого проводится поиск аналитического решения, во многом зависит от специалиста по системному анализу. Как правило, аналитик разрабатывает несколько альтернативных решений и выбирает из них то, которое лучше подходит для исследуемой задачи.
5. Моделирование
После того как проанализированы подходящие альтернативы, приступают к важному этапу моделирования сложных динамических взаимосвязей между различными аспектами проблемы. Здесь следует отметить, что моделируемым процессам, а также механизмам обратной связи присуща внутренняя неопределенность, что значительно усложняет понимание как самой системы, так и возможностей ее управляемости.
6. Оценка возможных стратегий
Как только моделирование доведено до стадии, на которой модель можно (по крайней мере, предварительно) использовать, начинается этап оценки потенциальных стратегий, полученных из модели. В ходе оценки исследуется чувствительность результатов к допущениям, сделанным при построении модели. Если окажется, что основные допущения некорректны, возможно, придется вернуться к этапу моделирования и скорректировать модель.
Обычно это связано с исследованием модели на «чувствительность» к тем аспектам проблемы, которые были исключены из формального анализа на втором этапе, когда ставилась задача и ограничивалась степень ее сложности.
7. Внедрение результатов
Заключительный этап системного анализа представляет собой применение на практике результатов, полученных на предыдущих этапах. Если исследование проводилось по описанной выше схеме, то шаги, которые для этого необходимо предпринять, будут достаточно очевидны. В то же время как раз на последнем этапе может выявиться неполнота тех или иных стадий или необходимость их пересмотра, в результате чего придется скорректировать модель и снова пройти какие-то из уже завершенных этапов.

12.3. Комплексная схема системного анализа

Поскольку системный анализ представляет собой определенный способ мышления, то перечень этапов должен рассматриваться как некое руководство к действию. Цель такого многоэтапного подхода состоит в том, чтобы помочь выбрать правильную стратегию для решения практических экологических задач. А задачи эти, как правило, крайне сложны, поэтому использование ЭВМ является характерной особенностью современных системных исследований.
Структура системного анализа направлена на то, чтобы сосредоточить главные усилия на сложных и, как правило, крупномасштабных проблемах, не поддающихся решению более простыми исследованиями, например, наблюдением или простым экспериментированием. Комплексная схема системного анализа приведена на рис. 12.2.
Если мы вернемся к предыдущим параграфам данной главы, то без труда обнаружим элементы этой схемы при рассмотрении тех или иных подходов, например, установление иерархии целей в задаче об оптимальном рационе питания, анализ чувствительности в задачах динамики популяции и необходимость в связи с этим рассмотрения стохастических моделей, оценки возможных и выбор оптимальных стратегий и т.д.



Тем не менее ряд вопросов не нашел отражения в предыдущих параграфах. А именно, все экологические воздействия – динамические, т. е. зависят от времени и постоянно изменяются. Более того, взаимодействия часто имеют особенность, называемую в технике «обратной связью», т. е. характеризуются тем, что некоторые эффекты процесса возвращаются к своему источнику, в результате чего эти эффекты усиливаются или видоизменяются. Обратные связи бывают положительными (усиление эффекта) или отрицательными (ослабление эффекта). С моделями такого типа познакомимся далее.

12.4. Задача управления водохранилищем

Водные системы используются для орошения, производства электроэнергии, водоснабжения, коммерческого рыболовства, как место для отдыха и т.д. С таким разнообразным характером эксплуатации ресурсов почти всегда связано столкновение различных интересов, что в свою очередь порождает множество различных проблем. Как сравнить, например, между собой различные стратегии управления? Или: как одна и та же стратегия благоприятствует одной группе пользователей и наносит удары другим?
Начнем с более простой задачи – управления водохранилищем, т. е. с накопления определенного запаса пресной воды и такого управления этим запасом, чтобы наилучшим образом удовлетворялись потребности в пресной воде. Выберем также некоторый период времени, для которого будем решать задачу управления, пусть это будет 5-летний период.
Итак, нас интересует величина Xt – запас воды в водохранилище в момент времени t и ее изменение с течением времени. Выделим факторы (прежде всего природные), которые оказывают влияние на величину Xt:


приток по реке, на которой построено водохранилище, который обозначим через Rt;


пополнение запаса воды за счет боковой приточности – Bt;


выпадение осадков на поверхность водохранилища – Оt;


испарение воды с поверхности водохранилища – It;


фильтрация воды в нижнем створе водохранилища – F1.
Помимо этого есть и факторы антропогенного происхождения, из которых для простоты выделим два:


вода расходуется на нужды сельского хозяйства – St и коммунальное водоснабжение – Кt;


часть воды пропускается через плотину дальше по реке – Рt.
Естественно предполагать, что запас воды в водохранилище не должен становиться меньше некоторой минимальной величины Хmin, но и не должен превышать объем водохранилища Xmax ≤ V
Схематически динамику запаса воды в водохранилище можно представить так, как показано на рис. 12.3.



Следующий вопрос, который необходимо решить, касается величин этих факторов, их изменений во времени. Пусть известны ряды наблюдений среднедоходных величин стока (выше водохранилища), осадков в районе водохранилища и боковой приточности за предыдущие 20 лет. Естественно предполагать, что изменение этих величин Rt, Оt и Вt в ближайшие 5 лет будет происходить примерно так же, как и в предыдущие 20 лет, т. е. их можно положить равными средним значениям за 20 лет:




(12.1)




(12.2)




(12.3)
где T = 1, 2, 3, 4, 5 .
Другими словами, можно считать величины Rt, Оt и Вt детерминированными, однако для их определения можно было бы применить и статистические методы, описанные в гл. 10.
Перейдем к процессам расходования воды, один из них – испарение. С достаточной точностью можно считать, что It ≈ Dt, где Dt – дефицит влажности, который может быть рассчитан так же, как выражения (12.1)–(12.3) по данным наблюдений. Тогда
It = αDt,



(12.4)
где α – эмпирический коэффициент пропорциональности.
Далее, объем воды Ft, которая профильтровывается в нижнем створе водохранилища, пропорциональна объему воды в водохранилище, т.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях

Hosted by uCoz