mguine.narod.ru


Экология, экологическая безопасность и борьба за первозданность природы.

Экология. Степанoвских Часть 4

20.4. Возобновляемые энергоресурсы (по Б. Небелу, 1993)

Технологии использования солнечной энергии быстро развиваются. Фотоэлектрогенераторы уже находят широкое применение, а стоимость производимого ими киловатт-часа энергии в середине 80-х годов по сравнению с 1973 годом сократилась в 50 раз. Ожидается дальнейшее сокращение того же порядка к концу XX в. благодаря применению более эффективных полупроводников и других технологических новшеств. Термоэлектрические генераторы производят более дешевую энергию, и их использование открывает перспективу получения большого количества энергии в аридных районах и ее экспорта в страны с умеренным климатом. Солнечные водонагреватели установлены в 90% всех домов на Кипре, в Израиле 65% горячей воды, используемой в быту, поступает из простых активных гелиосистем. Около 12% домов в Японии и 37% в Австралии также используют такие системы.
Концентрация солнечной энергии для производства высокотемпературного тепла и электричества может быть осуществлена в системах, где громадные управляемые компьютерами зеркала фокусируют солнечный свет на центральный коллектор тепла, обычно расположенный наверху высокой башни. Эта сконцентрированная солнечная энергия позволяет получить сравнительно высокие температуры, необходимые для индустриальных процессов или для производства пара под высоким давлением для вращения турбин и выработки электричества.
Прямое преобразование солнечной энергии в электричество может быть осуществлено при помощи фотоэлементных ячеек, обычно называемых солнечными батареями. В середине 90-х гг. XX в. солнечные батареи снабжали электроэнергией около 15 тыс. домов в разных странах мира.
В некоторых регионах, обладающих особыми условиями, энергия ветра является неограниченным источником энергии. Ветроэнергетические системы, как правило, имеют относительно высокий коэффицент полезного действия, не выделяют углекислый газ или другие загрязнители воздуха, при эксплуатации не требуют воды для охлаждения. В Дании и других странах европейского Севера ветряные двигатели дают не менее 12% электроэнергии. Ветроэнергетические установки не нуждаются в воде, что делает их особенно актуальными в аридных и семи-аридных районах.
С XVII в. кинетическая энергия падающей и текущей воды рек и ручьев используется для выработки электричества на небольших и крупных гидроэлектростанциях. Электричество, вырабатываемое силой падающей воды, является скрытой формой солнечной энергии, благодаря которой происходит гидрологический цикл. В 90-х гг. XX в. на долю гидроэнергии приходился 21% вырабатываемого в мире электричества и 6% всей энергии. Страны и районы, расположенные в горах и на высокогорных плато, имеют наибольший гидроэнергетический потенциал.
В гидроэнергетике получают распространение бесплотинные ГЭС, не наносящие ущерба земельным и водным ресурсам.
Энергия приливов у побережий морей и океанов может использоваться для выработки электричества путем создания плотины, отсекающей залив от морей. Если разница между полной и малой водой достаточно велика, кинетическая энергия этих ежедневных приливных течений, обусловленных приливообра-зующими силами Луны, может быть использована для вращения турбин, размещенных в плотине и вырабатывающих электричество. Использование энергии приливов для производства электричества имеет целый ряд преимуществ. Прилив как источник энергии практически бесплатен, а коэффициент полезного действия достаточно высок. Не происходит выбросов в атмосферу углекислого газа, загрязнение воздуха и нарушения почвы незначительны.
На Земле есть около 15 мест, где амплитуда приливов и отливов достигает такой величины, что позволяет строить плотины для выработки электроэнергии.
Океаническая вода аккумулирует огромное количество солнечного тепла. Заслуживает внимания практическое использование большой разницы температур холодных глубинных и теплых поверхностных вод тропических океанов для выработки электроэнергии. Разность температур между поверхностью и глубиной в 600 м там, где проходит теплый Гольфстрим, может достигать 22°С. Принцип работы ОТЕС (океаническая тепловая энергия) сводится к попеременному использованию слоев воды с разной температурой для кипячения и конденсации рабочей жидкости. В промежутках ее пары при высоком давлении вращают турбину.
Солнечные пруды — сравнительно дешевый способ улавливать и запасать солнечную энергию. Искусственный водоем частично заполняется рассолом (очень соленой водой), сверху которого находится пресная вода. Солнечные лучи без помех проходят через пресную воду, но поглощаются рассолом, превращаясь при этом в тепло. Горячий раствор соли может циркулировать по трубам, отапливая помещения или использоваться для выработки электричества. Им нагревают жидкости с низкой точкой кипения, которые, испаряясь, приводят в движение турбогенераторы низкого давления. В связи с тем что солнечный пруд представляет собой высокоэффективный теплоаккумулятор, с его помощью можно получать энергию непрерывно.
Перспективным является использование тепла земных недр или геотермальной энергии.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях

Hosted by uCoz